

A quick guide why not to use A+B designs

Adaptive Designs Working Group of the MRC Network of Hubs for Trials Methodology Research

This document summarises the main arguments why 3+3 and similar rule-based A+B designs [18,26] are inappropriate for phase I dose escalation studies. These designs are still widely used [17,23-25] although superior model-based designs such as the continual reassessment method (CRM) [9,21] are available.

Besides investigating a toxicity endpoint for one single drug, extensions to model-based designs for other practically relevant settings exist: e.g., two-drug combination therapies [6,11,13,14,32,33], seamless phase I/II designs that assess toxicity and efficacy together [2,4,28,31], and censored time-to-event endpoints (TITE-CRM) [10].

Why model-based designs are preferable to rule-based designs:

- The goal of an early-phase dose escalation study with cytotoxic oncology drugs is to estimate the maximum tolerated dose (MTD) i.e., the highest dose that "does not cause unacceptable side effects" [20], or more statistically speaking, the dose where the probability of dose-limiting toxicities (DLTs) is equal to some prespecified target level, typically between 0.25 and 0.33. Using model-based designs, the MTD at the end of the trial relates to a target probability of DLT that is specified before the trial begins. However, this is not the case with rule-based designs, and the expected probability of DLT at the MTD can vary greatly [7,15].
- More patients receive doses near the MTD with model-based than with A+B designs, where patients are more likely to be overdosed or treated at subtherapeutic doses [1].
- For instance, it was shown in simulations that only about 35% of patients are treated at the optimal dose with a 3+3 design compared to 55% for Bayesian adaptive designs [1].
- Model-based designs allow estimation of the MTD together with an informative measure of precision. However, under a 3+3 design there is a lot of uncertainty around the MTD selected at the end of a trial; the 95% confidence interval for the probability of DLT is either (0.004, 0.64) (for 1 in 6 DLTs) or (0, 0.71) (for 0 in 3 DLTs); if dose de-escalation is allowed in the design, it can also be (0, 0.46) (for 0 in 6 DLTs).
- A+B designs are commonly viewed as simple and straightforward, in opposition to the purported "black box" of model-based designs (where clinicians may feel they are not in control of their study), but there are user-friendly software tools (see below) to facilitate their implementation. Moreover, it is easy to make the "black box" transparent using the concept of "dose transition pathways" [30] that can help understand possible courses of action in a trial that uses a model-based design.

¹ There are model-free (or curve-free) designs that are recommendable, too, but these are not based on simplistic "rules" like A+B and related designs.

² Obviously model-based designs also involve certain "rules" e.g., how to update the model. We use the term rule-based here for A+B and related designs. Rule-based designs are also called algorithm-based designs.

- A+B designs are "memoryless" [22] and therefore inefficient: they only use the information from the last cohort of patients that entered the study to determine the next dose whereas model-based designs make use of all data accumulated.
- Although there are some extensions of rule-based designs (e.g., to drug combinations [5,12,16]), they also suffer from the same drawbacks as simple A+B designs, whereas model-based approaches are clearly more flexible and supersede rule-based designs also for more complex questions e.g., when assessing drug combinations [6,11,13,14,32,33] or toxicity together with efficacy [2,4,28,31].
- Where the goal of the dose escalation study is to understand a dose-response relationship (e.g., when looking into a pharmacodynamic marker and not just toxicity), only a model-based approach will be expedient, whereas A+B designs do not adequately characterise the dose-response curve and are therefore useless.

Table 1: Summary of some key features of rule-based and model-based designs.

	Rule-based designs	Model-based designs
Target DLT rate	unclear	clearly defined and can be flexibly chosen
Patients treated at the optimal dose	(relatively) few	(relatively) many
Patients treated at subtherapeutic doses	(relatively) many	(relatively) few
Utilisation of available data	poor	efficient
Extension to more complex questions	difficult & dubious	smooth & straightforward
Deviations from the plan (e.g., other doses, different number of patients on a dose)	hard or impossible to incorporate	easily accommodated

Whatever design is used, the model should be viewed as a guiding tool as there are a lot of factors not captured by only looking at DLTs. It provides recommendations for dose-escalation decisions, which can be combined with clinical expertise in order to reach a consensus about what the next cohort of patients will receive.

Some useful (and free) software tools:

- Properties of rule-based A+B designs can be calculated and visualised with this web app: https://graham-wheeler.shinyapps.io/AplusB/.
- CRM designs are easily calculated with the R packages borm [27], CRM [19], or dform [8].
- Dual agent and multiple endpoints designs are included in the R package crmPack [3].
- The MD Anderson Cancer Center offers a software library (https://biostatistics.mdanderson.org/softwaredownload) with multiple tools for dose

- escalation studies, specifically bCRM, BMA CRM, BOIN Design Desktop Program, CRM, EffTox, Dose Schedule Finder, ToxFinder, UAROET, and U2OET.
- A web-based dose-finding tool NextGen-DF [29] is available at http://www.compgenome.org/NGDF.
- The Center for Quantitative Sciences at Vanderbilt University's School of Medicine developed a web app to compare and select among different designs for dose escalation: https://cgs.mc.vanderbilt.edu/shiny/AdaptiveDesignS.

References

- [1] Babb J, Rogatko A, Zacks S (1998) Cancer phase I trials: efficient dose escalation with overdose control. *Statistics in Medicine*, **17**(10), 1103-1120.
- [2] Bekele B, Shen Y (2005) A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial. *Biometrics*, **61**(2), 344-354.
- [3] Bove DS, Yeung WY, Palermo G, Jaki T (2016) crmPack: Object-oriented implementation of CRM designs. R package version 0.1.9. Available from http://CRAN.R-project.org/package=crmPack.
- [4] Braun TM (2002) The bivariate continual reassessment method: extending the CRM to phase I trials of two competing outcomes. *Controlled Clinical Trials*, **23**(3), 240-256.
- [5] Braun TM, Alonzo TA (2011) Beyond the 3+3 method: expanded algorithms for dose-escalation in phase I oncology trials of two agents. *Clinical Trials*, **8**(3), 247-259.
- [6] Braun TM, Wang S (2010) A hierarchical Bayesian design for phase I trials of novel combinations of cancer therapeutic agents. *Biometrics*, **66**(3), 805-812.
- [7] Chen Z, Krailo MD, Sun J, Azen SP (2009) Range and trend of expected toxicity level (ETL) in standard A+B designs: a report from the children's oncology group. *Contemporary Clinical Trials*, **30**(2), 123-128.
- [8] Cheung K (2013) dfcrm: Dose-finding by the continual reassessment method. R package version 0.2-2. Available from http://CRAN.R-project.org/package=dfcrm.
- [9] Cheung YK (2011) *Dose Finding by the Continual Reassessment Method.* Chapman & Hall/CRC, Boca Raton, FL. ISBN 978-1-4200-9151-9.
- [10] Cheung YK, Chappell R (2000) Sequential designs for phase I clinical trials with late-onset toxicities. *Biometrics*, **56**(4), 1177-1182.
- [11] Cotterill A, Lorand D, Wang J, Jaki T (2015) A practical design for a dual-agent dose-escalation trial that incorporates pharmacokinetic data. *Statistics in Medicine*, **34**(13), 2138-2164.
- [12] Hamberg P, Verweij J (2009) Phase I drug combination trial design: walking the tightrope. *Journal of Clinical Oncology*, **27**(27), 4441-4443.

- [13] Harrington JA, Wheeler GM, Sweeting MJ, Mander AP, Jodrell DI (2013) Adaptive designs for dual-agent phase I dose-escalation studies. *Nature Reviews Clinical Oncology*, **10**(5), 277-288.
- [14] Hirakawa A, Wages NA, Sato H, Matsui S (2015) A comparative study of adaptive dose-finding designs for phase I oncology trials of combination therapies. *Statistics in Medicine*, **34**(24), 3194-3213.
- [15] Kang SH, Ahn C (2001) The expected toxicity rate at the maximum tolerated dose in the standard phase I cancer clinical trial design. *Drug Information Journal*, **35**(4), 1189-1199.
- [16] Lee BL, Fan SK (2012) A two-dimensional search algorithm for dose-finding trials of two agents. *Journal of Biopharmaceutical Statistics*, **22**(4), 802-818.
- [17] Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. *Journal of the National Cancer Institute*, **101**(10), 708-720.
- [18] Lin Y, Shih WJ (2001) Statistical properties of the traditional algorithm-based designs for phase I cancer clinical trials. *Biostatistics*, **2**(2), 203-215.
- [19] Mo Q (2012) CRM: Continual reassessment method (CRM) for phase I clinical trials. R package version 1.1.1. Available from http://CRAN.R-project.org/package=CRM.
- [20] National Cancer Institute (2015) NCI Dictionary of Cancer Terms. Available at http://www.cancer.gov/publications/dictionaries/cancer-terms?CdrID=572160.
- [21] O'Quigley J, Pepe M, Fisher L (1990) Continual reassessment method: a practical design for phase 1 clinical trials. *Biometrics*, **46**(1), 33-48.
- [22] O'Quigley J, Zohar S (2006) Experimental designs for phase I and phase I/II dose-finding studies. *British Journal of Cancer*, **94**(5), 609-613.
- [23] Penel N, Isambert N, Leblond P, Ferte C, Duhamel A, Bonneterre J (2009) "Classical 3+3 design" *versus* "accelerated titration designs": analysis of 270 phase 1 trials investigating anti-cancer agents. *Investigational New Drugs*, **27**(6), 552-556.
- [24] Riviere MK, Le Tourneau C, Paoletti X, Dubois F, Zohar S (2015) Designs of drug-combination phase I trials in oncology: a systemaic review of the literature. *Annals of Oncology*, **26**(4), 669-674.
- [25] Rogatko A, Schoeneck D, Jonas W, Tighiouart M, Khuri FR, Porter A (2007) Translation of innovative designs into phase I trials. *Journal of Clinical Oncology*, **25**(31), 4982-4986.
- [26] Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics, 45(3), 925-937.
- [27] Sweeting M, Mander A, Sabin T (2013) bcrm: Bayesian continual reassessment method designs for phase I dose-finding trials. *Journal of Statistical Software*, **54**(13), 1-26.
- [28] Thall P, Russell K (1998) A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in phase I/II clinical trials. *Biometrics*, **54**(1), 251-264.
- [29] Yang S, Wang SJ, Ji Y (2015) An integrated dose-finding tool for phase I trials in oncology. *Contemporary Clinical Trials*, **45**(Part B), 426-434.

- [30] Yap C, Billingham L, Craddock C, O'Quigley J (2015) Dose transition pathways: a design, analysis and operational tool for dose-finding trials using model-based designs. *Trials*, **16**(Suppl. 2), O13.
- [31] Yeung WY, Whitehead J, Reigner B, Beyer U, Diack C, Jaki T (2015) Bayesian adaptive dose-escalation procedures for binary and continuous responses utilizing a gain function. *Pharmaceutical Statistics*, **14**(6), 479-487.
- [32] Yin G, Yuan Y (2009) Bayesian dose finding in oncology for drug combinations by copula regression. Journal of the Royal Statistical Society, Series C: Applied Statistics, **58**(2), 211-224.
- [33] Yuan Y, Yin G (2008) Sequential continual reassessment method for two-dimensional dose finding. *Statistics in Medicine*, **27**(27), 5664-5678.

This document was prepared by members of the Adaptive Designs Working Group (ADWG) of the MRC Network of Hubs for Trials Methodology Research (http://www.methodologyhubs.mrc.ac.uk/research/working-groups/adaptive-designs/).

To report mistakes or suggest improvements, please email to: p.pallmann@lancaster.ac.uk