

## Factorial vs MAMS designs in clinical trials

25 September 2018 Despina Vasileiou



# Outline



- Motivation and example
- Key design features
- Simulation results for different scenarios
- Case study design comparison
- Conclusions

## Design comparison Motivation



- The FDA call for clinical trial methods that achieved reliable results more quickly necessitates both:
  - Simultaneous study of two or more treatments within one trial.
  - Accurate estimation of the main treatment effects.
- Designs commonly used in the literature.
  - Factorial designs, which include sole treatments and their combinations.
  - Multi-Arm designs (MA).
  - Multi-Arm Multi-Stage designs (MAMS).

# Common design basis



- Comparing two arms, A and B, and their combination, AB, against control
- Normally distributed response, Y<sub>j</sub> ~ N(μ<sub>j</sub>, σ<sup>2</sup>) with *j* = A, B, AB, 0 and μ<sub>j</sub> the mean effect of the response to treatment or control
- Global null hypothesis testing with overall type-I error control:  $H_0 = \{H_{0A} : \mu_A \le \mu_0, \ H_{0B} : \mu_B \le \mu_0, \ H_{0AB} : \mu_{AB} \le \mu_0\}$
- Allocation ratios *r*, *q* for the single treatment and combination groups respectively, relative to the control group, *i.e*  $n_A = n_B = rn_0$  and  $n_{AB} = qn_0$ , with comparisons based on balanced designs when r = q.

# Multi-arm design features & Statistics University

• A four-arm design using Dunnett's test [2] uses the full model for treatment effect estimation.

 $Y_i = \beta_0 + \beta_1 \mathbf{I}_{Ai} + \beta_2 \mathbf{I}_{Bi} + \beta_3 \mathbf{I}_{Ai} \mathbf{I}_{Bi} + \varepsilon_i \text{ with } i = 1, 2, \dots, n_0 + n_A + n_B + n_{AB}$ 

(2)

#### Mean treatment response

| Treatments |   | eatments | В                                       |                     |  |
|------------|---|----------|-----------------------------------------|---------------------|--|
|            |   |          | Presence                                | Absence             |  |
|            | Α | Presence | $\beta_0 + \beta_1 + \beta_2 + \beta_3$ | $\beta_0 + \beta_1$ |  |
|            |   | Absence  | $\beta_0 + \beta_2$                     | $\beta_0$           |  |

• The statistics for the hypothesis testing are based on

$$Z_{\mathbf{c}_{j}^{\top}\boldsymbol{\beta}} = \frac{\mathbf{c}_{j}^{\top}\hat{\boldsymbol{\beta}}}{\sigma\sqrt{\mathbf{c}_{j}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\mathbf{c}_{j}}}$$

# Multi-arm multi-stage design features



- Extends Dunnett test to allow for interim analyses [3]
- Use of the O'Brien-Fleming boundary shape
- · Allows for early stopping based on benefit or lack thereof
- Selects treatments that look promising



# Factorial design features Astatistics Lancaster Treatment effect and allocation impact

 Factorial designs assume no interaction in treatment effect estimation, *i.e.* β<sub>3</sub> = 0. In a 2 × 2 design:

$$Y_i = \beta_0 + \beta_1 \mathbf{I}_{Ai} + \beta_2 \mathbf{I}_{Bi} + \varepsilon_i$$

The test statistics used are

$$Z_{A} = \sqrt{n_{0}} \frac{r(r+q)(\bar{Y}_{A} - \bar{Y}_{0}) + qr(1+r)(\bar{Y}_{AB} - \bar{Y}_{B})}{\sigma\sqrt{(1+r)(r+q)(r^{2} + 2rq + r^{2}q)}}$$

$$Z_{B} = \sqrt{n_{0}} \frac{r(r+q)(\bar{Y}_{B} - \bar{Y}_{0}) + qr(1+r)(\bar{Y}_{AB} - \bar{Y}_{A})}{\sigma\sqrt{(1+r)(r+q)(r^{2} + 2rq + r^{2}q)}}$$

$$Z_{AB} = \sqrt{n_{0}} \frac{\bar{Y}_{AB} - \bar{Y}_{0}}{\sigma\sqrt{\frac{1+q}{q}}}$$
(3)

**Factorial design features** Allocation impact on critical values ( $\alpha = 0.05$ )

- Balanced design the critical value is found to be k = 2.028
- When r = q optimal which corresponds to critical value 2.017 is for r = q = 1.7
- For  $r \in [0.5, 2.5]$  the optimum critical value of 1.954 occurs for q = 0.8, r = 2.5



| r ∖q | 0.1  | 0.5  | 1    |
|------|------|------|------|
| 0.1  | 2.09 | 2.10 | 2.11 |
| 0.5  | 2.07 | 2.05 | 2.07 |
| 1    | 2.06 | 2.02 | 2.03 |
| 2    | 2.04 | 1.97 | 1.98 |

### Alternative scenarios Allocation impact on sample size



- Alternative hypothesis scenarios consistent with factorial design assumptions with  $\Delta=0.5$  and  $\delta_0=0.1$ 
  - 1.  $H_1: \mu_A \mu_0 = \Delta, \mu_B \mu_0 = \delta_0, \mu_{AB} \mu_0 = \Delta + \delta_0, \mu_0 = 0$
  - 2. H<sub>1</sub>:  $\mu_A \mu_0 = \mu_B \mu_0 = \delta_0$ ,  $\mu_{AB} \mu_0 = 2\delta_0$



- $H_1$  on the left: Balanced design sample size 160 with minimum 129 when r = 0.01 and q = 0.9
- $H_1$  on the right: Balanced design sample size 2008 with minimum 1150 when r = 0.01 and q = 1

### Alternative scenarios Allocation impact on sample size

Alternative hypothesis scenarios inconsistent with factorial design assumptions with Δ = 0.5 and δ<sub>0</sub> = 0.1
 1. H<sub>1</sub>: μ<sub>A</sub> - μ<sub>0</sub> = Δ & μ<sub>B</sub> - μ<sub>0</sub> = μ<sub>AB</sub> - μ<sub>0</sub> = δ<sub>0</sub>

Mathematics & Statistics University

- 1.  $H_1: \mu_A \mu_0 = \Delta \& \mu_B \mu_0 = \mu_{AB} \mu_0 = \delta_0$
- 2.  $H_1: \mu_{AB} \mu_0 = \Delta, \mu_A \mu_0 = \mu_B \mu_0 = \delta_0$



- $H_1$  on the left: Balanced design sample size 704 with minimum 326 when r = 0.81 and q = 0.1
- H<sub>1</sub> on the right : Balanced design sample size 324 with minimum 199 when r = 0.1 and q = 1

# Simulation Results



Effect of interaction on factorial designs

- Explore additivity of treatment effects in balanced designs
- $\beta_3$ , ranges from -1 to 1 (antagonism to synergy)



For  $H_1$ : { $H_{1A}$ :  $\mu_A > 0$ , or  $H_{1B}$ :  $\mu_B > 0$ , or  $H_{1AB}$ :  $\mu_{AB} > 0$ }, and for the remaining three plots  $H_{1j}$ :  $\mu_j > 0$  for each j = A, B, AB.

# Comparison Results



Direct power comparison between all designs

- Based on study evaluating use of physiotherapy on osteoarthritis [1]
- Either manual physiotherapy, exercise physiotherapy, both or standard of care
- n = 45 per group
- Difference in points of WOMAC score
- Interesting effect  $\Delta = 28$ , uninteresting  $\delta_0 = 7$  and  $\sigma = 50$ .
- Performance of Factorial, MA and MAMS designs

# Comparison Results



Probability of rejecting the null hypothesis



0: 
$$\mu_0 = \mu_A = \mu_B = \mu_{AB} = 0$$
  
i:  $\mu_A - \mu_0 = \Delta$ ,  
 $\mu_B - \mu_0 = \mu_{AB} - \mu_0 = \delta_0$   
ii:  $\mu_A - \mu_0 = \mu_B - \mu_0 = \delta_0$ ,  
 $\mu_{AB} - \mu_0 = \Delta$   
iii:  $\mu_A - \mu_0 = \Delta$ ,  $\mu_B - \mu_0 = \delta_0$ ,  
 $\mu_{AB} - \mu_0 = \Delta + \delta_0$   
iv:  $\mu_A - \mu_0 = \delta_0$ ,  $\mu_B - \mu_0 = \delta_0$ ,  
 $\mu_{AB} - \mu_0 = 2\delta_0$ 

# Interaction effect



Probability of rejecting the null hypothesis, while the interaction ranges from -2 to 2 (\* $\Delta$ ) when:

1. 
$$\mu_A - \mu_0 = \mu_B - \mu_0 = 0$$
  
2.  $\mu_A - \mu_0 = \mu_B - \mu_0 = 7$   
3.  $\mu_A - \mu_0 = 0 \& \mu_B - \mu_0 = 28$ 



Red for factorial design, black for MA design and green for MAMS design

### Design differences Total sample size



Comparison amongst sample sizes of a balanced factorial design, a multi-arm design and the expected sample size of a multi-arm two-stage design with 0 futility boundary using case study parameters and  $\alpha = 0.05$ ,  $1 - \beta = 0.9$ .







- No difference in the expected sample size of a MAMS trial and a factorial one when there is no interaction between the treatments.
- Observed a notable inflation of the type I error in the simulation study when the sole treatments interact in a synergistic manner (β<sub>3</sub> > 0).
- Also found losses of power when the treatments have in combination an antagonistic effect.
- Factorial designs should only be considered instead of a multi-arm design when there is evidence that the assumption of additivity is met.
- MAMS designs are a robust alternative to the presence of interactions and are expected to require a much smaller sample size at the expense of a small deficiency in power.

# References





#### J. H. Abbott, M. C. Robertson, J. E. McKenzie, G. D. Baxter, J.-C. Theis, A. J. Campbell, et al.

Exercise therapy, manual therapy, or both, for osteoarthritis of the hip or knee: a factorial randomised controlled trial protocol.

Trials, 10(11):6215-10, 2009.



#### C. W. Dunnett.

Selection of the best treatment in comparison to a control with an application to a medical trial. *Design of experiments: Ranking and selection*, pages 47–66, 1984.



#### D. Magirr, T. Jaki, and J. Whitehead.

A generalized dunnett test for multi-arm multi-stage clinical studies with treatment selection. *Biometrika*, 99(2):494–501, 2012.

# **Published Paper**



#### Jaki, T. and Vasileiou, D.

Factorial versus multiarm multistage designs for clinical trials with multiple treatments. *Statistics in medicine*, 36(4), pp.563-580,2017.





25 September 2018 Despina Vasileiou

