Introduction	Design framework	Group sequential	Sample size re-estimation	Discussion
000	000	000000	00000	000

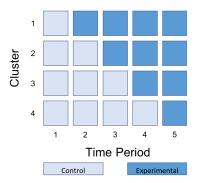
Adaptive design of cluster randomised trials

Michael J. Grayling

MRC Biostatistics Unit Cambridge, UK

2018 HTMR Network Annual Meeting

Introduction	Design framework	Group sequential	Sample size re-estimation	Discussion 000
Outline				


- 2 Design framework
- Group sequential SW-CRTs
- 4 Sample size re-estimation in SW-CRTs

Introduction ●00	Design framework 000	Group sequential	Sample size re-estimation	Discussion 000
Adaptive	design of PG	G-CRTs		

- Much research has now been conducted to facilitate adaptive trial design
- But the majority of focus has been on individual level randomisation
- Some exceptions for parallel group (PG) cluster randomised trials (CRTs)
 - Lake *et al* (2002) discussed re-estimation of the required number of clusters
 - Zou *et al* (2005) described group sequential design for binary outcomes
 - van Schie and Moerbeek (2014) considered re-estimation of the required number of individuals per cluster

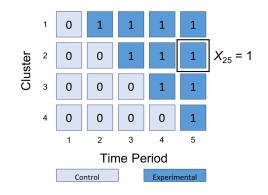
Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion 000
CRXO and	d SW-CRTs			

 In recent years there has been increased interest in cluster randomised crossover (CRXO) and stepped-wedge (SW) CRTs

• Motivation comes from considerations related to these designs

Introduction 00●	Design framework 000	Group sequential	Sample size re-estimation	Discussion 000
CRXO an	d SW-CRTs			

- 31% of SW-CRTs failed to find efficacy on their primary outcome
- Possibly associated with over enthusiastic use of the design
- Or could be due to the challenge of specifying the variance components
- Describe a flexible framework for incorporating interim assessments of futility/efficacy in SW-CRTs/CRXO trials
- Detail how we can re-estimate the required sample size in a blinded or unblinded manner


Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion 000
Outline				

- 2 Design framework
- Group sequential SW-CRTs
- 4 Sample size re-estimation in SW-CRTs

Introduction 000	Design framework ●○○	Group sequential	Sample size re-estimation	Discussion 000
Trial sett	ing			

- Consider a SW-CRT in C clusters over T time periods, with m measurements per cluster per period
- Suppose the treatment allocations have also been specified, via a matrix ${\boldsymbol X}$ of zeroes and ones

Introduction 000	Design framework ⊙●○	Group sequential	Sample size re-estimation	Discussion 000
Analysis				

- Can be used when there are different participants in each period, or the same participants
- They also work for almost any choice of linear mixed model
- For simplicity

$$Y_{ijk} = \mu + \pi_j + \tau X_{ij} + c_i + e_{ijk}.$$

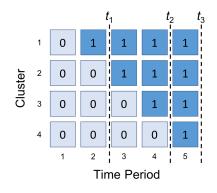
- The random cluster effect $c_i \sim N(0,\sigma_c^2)$, and the residual error $e_{ijk} \sim N(0,\sigma_e^2)$
- We are interested in testing

$$H_0: \tau \le 0, \qquad H_1: \tau > 0.$$

• We want a type-I error-rate of α when $\tau=0,$ and power of $1-\beta$ when $\tau=\delta$

Introduction 000	Design framework 00●	Group sequential	Sample size re-estimation	Discussion 000
Example				

- Bashour *et al* (2013) described a SW-CRT to assess the effect of training doctors in communication skills on women's satisfaction with doctor-woman relationship during labour and delivery
- Design had C=4,~T=5, estimated $\hat{\tau}=-0.13,~\hat{\sigma}_c^2=0.02$ and $\hat{\sigma}_e^2=0.51$
- For $\alpha = 0.05$, $\beta = 0.1$, $\delta = 0.2$, design required m = 70 patients per cluster per period
- Use these as the example parameters in all of what follows


Introduction 000	Design framework 000	Group sequential	Sample size re-estimation	Discussion 000
Outline				

- 2 Design framework
- 3 Group sequential SW-CRTs
- 4 Sample size re-estimation in SW-CRTs

Introduction	Design framework	Group sequential	Sample size re-estimation	Discussion
000	000	•00000		000
Goal				

- Include interim analyses where we can test for futility/efficacy, reducing the required number of observations
- Specify a collection of time periods after which we will conduct analyses: t_1, t_2, \ldots

Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion 000
Stopping	; rules			

- Our testing rules are then based on efficacy and futility stopping boundaries, $e = (e_{t_1}, e_{t_2}, ...)$ and $f = (f_{t_1}, f_{t_2}, ...)$
- We need a test statistic Z_t to use after time period t
 - If $Z_t > e_t$ then we stop the trial, and reject H_0
 - If $Z_t \leq f_t$ then we stop the trial, and do not reject H_0
 - $\bullet\,$ Otherwise we continue the trial to period t+1
- Natural to use a Wald test statistic

$$Z_t = \frac{\hat{\tau}_t}{\sqrt{\mathsf{Var}(\hat{\tau}_t)}} = \hat{\tau}_t I_t^{1/2}.$$

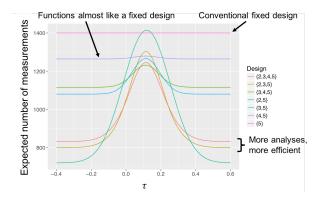
Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion 000
Theory				

- Established group sequential design methodology is directly applicable to this longitudinal setting
- $oldsymbol{Z} = (Z_{t_1}, Z_{t_2}, \dots)$ has a multivariate normal distribution

$$\begin{split} \mathbb{E}(Z_t) &= \tau I_t^{1/2},\\ \mathrm{Cov}(Z_{t_i}, Z_{t_i}) &= (I_{t_i}/I_{t_j})^{1/2}, \ t_i \leq t_j. \end{split}$$

- So we can compute the probability we stop for efficacy/futility at each analysis using multivariate normal integration
- Adding up the probability you stop for efficacy at each analysis gives you the overall rejection probability
- Use this in...

Introduction	Design framework	Group sequential	Sample size re-estimation	Discussion
000	000	000●00		000
Design c	letermination			


- We need to choose m, e, and f, given choices of the variance components σ_c^2 and σ_e^2 , that provide the desired error-rates
- A simple solution is to use the "error spending" approach to sequential trial design
- Or a global optimisation algorithm can be used to find the best possible boundaries
- Created some simple software for this

```
> summary(example)
Identified design has:
    m = 97,
    e = (2.32, 2.06, 1.90),
    f = (-0.57, 0.65, 1.90).
```

Introduction 000	n	Design frame 000	work	Group sequential 0000€0	Sample size re-estimation	Discussion 000
-			c			

Expected number of measurements

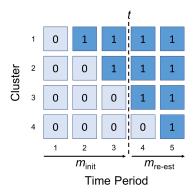
• Consider the influence of the choice of analysis times

• But including interim analyses increases the maximal possible required number of measurements

Introduction 000	Design framework 000	Group sequential	Sample size re-estimation	Discussion 000
Summary				

- Long-standing group sequential design theory can be used to incorporate interim analyses in to SW-CRTs
- Could be an effective method for reducing the expense of such trials when an intervention is highly effective/ineffective
- To power correctly, requires an assumption of known variance...

Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion 000
Outline				


Introduction

- 2 Design framework
- Group sequential SW-CRTs

4 Sample size re-estimation in SW-CRTs

Introduction	Design framework	Group sequential	Sample size re-estimation	Discussion
000	000		•0000	000
Goal				

- After some specified time period *t*, re-estimate the required variance components
- Go from $m_{\rm init}$ measurements per cluster per period to a hope-fully more appropriate $m_{\rm re-est}$

Introduction 000	Design framework 000	Group sequential	Sample size re-estimation	Discussion 000
Unblinded	re-estimation	ı		

- Always straight forward to implement, but less favoured by regulatory agencies
- Fit the chosen model to the data to acquire the re-estimates $\hat{\sigma}_c^2$ and $\hat{\sigma}_e^2$
- Can write down a variance for the information when m_{init} patients are used in time periods $1, \ldots, t$, and $m_{\text{re-est}}$ in time periods $t + 1, \ldots, T$

$$\mathsf{Var}(\hat{\tau} \mid m_{\mathsf{init}}, m_{\mathsf{re-est}}, \hat{\sigma}_c^2, \hat{\sigma}_e^2).$$

• Use these in the conventional method of sample size determination

$$\Phi\{\delta/\mathsf{Var}(\hat{\tau}\mid m_{\mathsf{init}}, m_{\mathsf{re-est}}, \hat{\sigma}_c^2, \hat{\sigma}_e^2) - z_{1-\alpha}\} \geq 1 - \beta.$$

Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion 000
Blinded re-estimation				

• Works in a similar way, but to acquire out estimates we use

$$\begin{split} S_{\text{eq1}}^2 &= \frac{m_{\text{init}}}{Ct - t} \sum_{i=1}^C \sum_{j=1}^t (\bar{Y}_{ij.} - \bar{Y}_{.j.})^2, \\ S_{\text{eq2}}^2 &= \frac{1}{m_{\text{init}}Ct - Ct} \sum_{i=1}^C \sum_{j=1}^t \sum_{k=1}^{m_{\text{init}}} (Y_{ijk} - \bar{Y}_{ij.})^2. \end{split}$$

• We can show that in the absence of a treatment effect

$$\begin{split} \hat{\sigma}_e^2 &= S_{\text{eq2}}^2, \\ \hat{\sigma}_c^2 &= \frac{1}{n}(S_{\text{eq1}}^2 - S_{\text{eq2}}^2), \end{split}$$

are unbiased estimates of the variance components

M. J. Grayling (mjg211@cam.ac.uk)

C : 1 1.		000000	00000	000
Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion 000

Simul	ation	study:	Power	
-------	-------	--------	-------	--

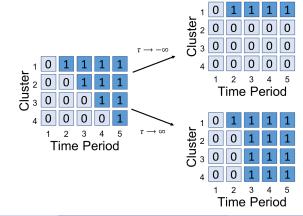
Assumed variances	Blinded	Unblinded	Fixed
50% smaller than truth	0.881	0.880	0.692
Correct	0.885	0.884	0.903
50% larger than truth	0.897	0.895	0.974

Procedure	Assumed variances	t = 2	t = 3	t = 4
Blinded	50% smaller than truth	0.870	0.881	0.815
Blinded	Correct	0.885	0.885	0.897
Blinded	50% larger than truth	0.888	0.897	0.954
Unblinded	50% smaller than truth	0.869	0.880	0.817
Unblinded	Correct	0.884	0.884	0.897
Unblinded	50% larger than truth	0.887	0.896	0.955

Introduction 000	Design framework 000	Group sequential	Sample size re-estimation	Discussion 000
Summary				

- Sample size re-estimation can greatly increase your power when you have under-specified the variance components
- Only a single re-estimation point required. Feasible in practice?
- Need to think carefully about when to time the re-estimation
- One other issue is that it is quite computationally intensive to investigate these designs

Introduction 000	Design framework	Group sequential	Sample size re-estimation	Discussion
Outline				


1 Introduction

- 2 Design framework
- Group sequential SW-CRTs

4 Sample size re-estimation in SW-CRTs

Introduction 000	Design framework 000	Group sequential	Sample size re-estimation	Discussion ●00
Discussion	ı			

- A variety of adaptive designs are available for CRTs
- Also working on a technique for response adaptive treatment allocation

Introduction 000	Design framework 000	Group sequential	Sample size re-estimation	Discussion 0●0
Discussior	ı			

- Time period structure of SW-CRTs may make interim analyses particularly appealing
- However, there are issues associated with their use
- Can interim analyses be handled efficiently?
- If you stop for efficacy, what would you do you do next if resources are scarce?
- Can you realistically handle an increase in the cluster period sample size?
- Nonetheless, if used wisely they could help greatly with improving efficiency/power of SW-CRTs

Introduction 000	Design framework 000	Group sequential	Sample size re-estimation	Discussion 000
Reference	S			

- Bashour HN, Kanaan M, Kharouf MH, Abdulsalam AA, Tabbaa MA, Cheikha SA (2013). The effect of training doctors in communication skills on women's satisfaction with doctor-woman relationship during labour and delivery: a stepped wedge cluster randomised trial in Damascus. *BMJ Open* 3:e002674
- Grayling MJ, Wason JMS, Mander AP (2017) Group sequential designs for steppedwedge cluster randomised trials. *Clin Trials* **14**:507-17
- Grayling MJ, Mander AP, Wason JMS (2018) Blinded and unblinded sample size reestimation procedures for stepped-wedge cluster randomized trials. *Biom J* 60:903-16
- Grayling MJ, Robertson DS, Wason JMS, Mander AP (2018) Design optimisation and post-trial analysis in group sequential stepped-wedge cluster randomised trials. arXiv:1803.09691v1
- Lake S, Kammann E, Klar N, Betensky R (2002) Sample size re-estimation in cluster randomization trials. *Stat Med* **21**:1337–50
- van Schie S, Moerbeek M (2014) Re-estimating sample size in cluster randomised trials with active recruitment within clusters. *Stat Med* **33**:3253–68
- Zou GY, Donner A, Klar N (2005) Group sequential methods for cluster randomization trials with binary outcomes. *Clin Trials* **2**:479-87