Session 9
 Power and sample size

9.1 Measure of the treatment difference
9.2 The power requirement
9.3 Application to a proportional odds analysis
9.4 Limitations and alternative approaches
9.5 Sample size reviews

9.1 Measure of the treatment difference

Let θ measure the advantage of T over C

$\theta>0$ T superior
$\theta=0 \quad$ No difference
$\theta<0$ Tinferior

Binary

p_{T} : probability of success on T
p_{c} : probability of success on C

$$
\theta=\log _{\mathrm{e}}\left(\frac{\mathrm{p}_{\mathrm{T}}\left(1-\mathrm{p}_{\mathrm{C}}\right)}{\mathrm{p}_{\mathrm{C}}\left(1-\mathrm{p}_{\mathrm{T}}\right)}\right) \quad \text { (log- odds ratio) }
$$

Ordered categorical data (assuming proportional odds)

$Q_{k T}$: probability of being in C_{k} or better on T
$Q_{k c}$: probability of being in C_{k} or better on C

$$
\theta=\log _{\mathrm{e}}\left\{\frac{\mathrm{Q}_{\mathrm{kT}}\left(1-\mathrm{Q}_{\mathrm{kc}}\right)}{\mathrm{Q}_{\mathrm{kC}}\left(1-\mathrm{Q}_{\mathrm{kT}}\right)}\right\} \quad \text { (log - odds ratio) }
$$

9.2 The power requirement

The null hypothesis of no treatment difference should be rejected at significance level α (2-sided), with probability ($1-\beta$), for a given magnitude $\theta=\theta_{R}$ of treatment difference

Prior to conducting the study, it is necessary to impose a model for the responses, in order to define the reference improvement

Information needed

Test of null hypothesis based on the assumption

$$
\hat{\theta} \sim \mathrm{N}\left(\theta, \frac{1}{\mathrm{w}}\right)
$$

Reject H_{0} if

$$
|\hat{\theta} \sqrt{\mathrm{w}}|>\mathrm{c}
$$

where w will be a function of

1. sample size
2. unknown parameters

We need

$$
\begin{align*}
& \mathrm{P}(|\hat{\theta} \sqrt{\mathrm{w}}|>\mathrm{c} ; \theta=0)=\alpha \\
& \text { i.e. } \quad \mathrm{P}(\hat{\theta} \sqrt{\mathrm{w}}>\mathrm{c} ; \theta=0)=\alpha / 2 \tag{i}
\end{align*}
$$

and $\quad \mathrm{P}\left(|\hat{\theta} \sqrt{\mathrm{w}}|>\mathrm{c} ; \theta=\theta_{\mathrm{R}}\right)=1-\beta$
i.e. $\quad P\left(\hat{\theta} \sqrt{W}>c ; \theta=\theta_{R}\right)=1-\beta$
as it is most unlikely that $\hat{\theta} \sqrt{\mathrm{w}}<-\mathrm{c}$ when $\theta=\theta_{\mathrm{R}}$

Standard normal density

If $\mathrm{X} \sim \mathrm{N}(0,1)$
then
$\mathrm{P}\left(\mathrm{X}>\mathrm{u}_{\gamma}\right)=\gamma$

Now $\hat{\theta} \sqrt{\mathrm{w}} \sim \mathrm{N}(\theta \sqrt{\mathrm{w}}, 1)$
From (i) $P(\hat{\theta} \sqrt{w}>c ; \theta=0)=\alpha / 2$
When $\theta=0 \quad \hat{\theta} \sqrt{\mathrm{w}} \sim \mathrm{N}(0,1)$
So

$$
\begin{equation*}
\mathrm{c}=\mathrm{u}_{\alpha / 2} \tag{iii}
\end{equation*}
$$

From (ii)

$$
P\left(\left(\hat{\theta}-\theta_{R}\right) \sqrt{W}>\left(c-\theta_{R} \sqrt{W}\right) ; \theta=\theta_{R}\right)=1-\beta
$$

and when $\theta=\theta_{R}, \quad\left(\hat{\theta}-\theta_{R}\right) \sqrt{w} \sim N(0,1)$

So

$$
\begin{equation*}
c-\theta_{R} \sqrt{w}=u_{1-\beta}=-u_{\beta} \tag{iv}
\end{equation*}
$$

Eq (iii) - Eq (iv) gives

$$
\theta_{\mathrm{R}} \sqrt{\mathrm{w}}=\mathrm{u}_{\alpha / 2}+\mathrm{u}_{\beta}
$$

i.e.

$$
\mathrm{w}=\left(\frac{\mathrm{u}_{\alpha / 2}+\mathrm{u}_{\beta}}{\theta_{\mathrm{R}}}\right)^{2}
$$

- This formula has general validity
- Can use w = V (Fisher's information) (Whitehead, 1996)
- To obtain a sample size, w must be related to n
- This is the most approximate part of the procedure

9.3 Application to a proportional odds analysis

- Assume proportional odds
- Denote the log-odds ratio, measuring the advantage of T over C, by θ
- Specify the difference sought (for which power is to be $1-\beta)$ as a value $\theta_{R}>0$ of θ

From Session 3

$$
\mathrm{V}=\frac{\mathrm{n}_{\mathrm{T}} \mathrm{n}_{\mathrm{C}} \mathrm{n}}{3(\mathrm{n}+1)^{2}}\left\{1-\sum_{\mathrm{k}=1}^{\mathrm{m}}\left(\frac{\mathrm{n}_{\mathrm{k}}}{\mathrm{n}}\right)^{3}\right\}
$$

Suppose that it is intended that $\mathrm{n}_{\mathrm{T}} \approx \mathrm{n}_{\mathrm{C}}$, and anticipated that $n_{k} / n \approx \bar{p}_{k}, k=1, \ldots, m$. Then

$$
\begin{equation*}
\mathrm{V} \approx \frac{\mathrm{n}}{12}\left(1-\sum_{\mathrm{k}=1}^{\mathrm{m}} \overline{\mathrm{p}}_{\mathrm{k}}^{3}\right) \quad \text { so that } \quad \mathrm{n}=\frac{12\left(\mathrm{u}_{\alpha / 2}+\mathrm{u}_{\beta}\right)^{2}}{\theta_{\mathrm{R}}^{2}\left(1-\sum_{\mathrm{j}=1}^{\mathrm{m}} \overline{\mathrm{p}}_{\mathrm{k}}^{3}\right)} \tag{9.1}
\end{equation*}
$$

Example: Head injury trial

- Patients - Head injury
- Treatments - Experimental drug vs placebo
- Response - Glasgow Outcome Scale at 3 months
- Anticipated responses in placebo arm

Category	Good recovery	Moderate disability	Severe disability	Vegetative/ Dead
Absolute Prob $\left(p_{k c}\right)$	0.264	0.156	0.131	0.449
Cumulative Prob $\left(\mathrm{Q}_{\mathrm{kc}}\right)$	0.264	0.420	0.551	1

Example: Head injury trial

- Significance test - 5\% (two-sided)
- Power - 0.9
- Clinically relevant difference - proportion in Good recovery and Moderate disability categories to move from 0.42 on placebo to 0.52 on experimental drug

$$
\theta_{R}=\log _{e}\left\{\frac{0.520(1-0.420)}{0.420(1-0.520)}\right\}=0.403
$$

Under the proportional odds model

$$
\mathrm{e}^{\theta_{\mathrm{R}}}=\frac{\mathrm{Q}_{\mathrm{kT}}\left(1-\mathrm{Q}_{\mathrm{kC}}\right)}{\mathrm{Q}_{\mathrm{kC}}\left(1-\mathrm{Q}_{\mathrm{kT}}\right)}
$$

so that

$$
\frac{\mathrm{Q}_{\mathrm{kT}}}{1-\mathrm{Q}_{\mathrm{kT}}}=\frac{\mathrm{e}^{\theta_{\mathrm{R}}} \mathrm{Q}_{\mathrm{kC}}}{1-\mathrm{Q}_{\mathrm{kC}}}
$$

that is

$$
Q_{k T}=\frac{e^{\theta_{\mathrm{R}}} \mathrm{Q}_{\mathrm{kC}}}{\left(1-\mathrm{Q}_{\mathrm{kC}}\right)+\mathrm{e}^{\theta_{\mathrm{R}}} \mathrm{Q}_{\mathrm{kC}}}
$$

for $\mathrm{k}=1,2,3$

For $\theta_{\mathrm{R}}=0.403$ and anticipated Q_{kc} values

Category	Good recovery	Moderate disability	Severe disability	Vegetative/ Dead
Cumulative Prob $\left(\mathbf{Q}_{\mathrm{kc}}\right)$	0.264	0.420	0.551	1
Cumulative Prob $\left(\mathbf{Q}_{\mathrm{kT}}\right)$	0.349	0.520	0.647	1

Absolute Prob $\left(\mathrm{p}_{\mathrm{kc}}\right)$	0.264	0.156	0.131	0.449
Absolute Prob $\left(p_{\mathrm{kT}}\right)$	0.349	0.171	0.127	0.353
Average Absolute Prob $\left(\overline{\mathrm{p}}_{\mathrm{k}}\right)$	0.307	0.163	0.129	0.401

Is proportional odds assumption sensible?

Is proportional odds assumption sensible?

$$
\begin{array}{ll}
\alpha=0.05 & u_{\alpha / 2}=1.960 \\
1-\beta=0.9 & u_{\beta}=1.282 \\
1-\sum_{k=1}^{4} \bar{p}_{k}^{3}= & 1-0.100 \\
= & 0.900
\end{array}
$$

Hence

$$
\begin{aligned}
\mathrm{n} & =\frac{12(1.960+1.282)^{2}}{0.403^{2} \times 0.900} \\
& =863
\end{aligned}
$$

That is the total sample size: 432 patients on each treatment

9.4 Limitations and alternative approaches

Method is accurate if $\theta_{R}<1$, and should be avoided if $\theta_{\mathrm{R}}>2$

- in the example

$$
\begin{aligned}
& \theta_{R}=1 \Rightarrow n=140 \\
& \theta_{R}=2 \Rightarrow n=35
\end{aligned}
$$

To overcome

- use an exact method (Hilton and Mehta, 1993)
- bootstrap
- simulate

Kolassa (1995) improves on equation (9.1), using a Cornish-Fisher approximation to the null distribution in place of the normal approximation

The method is implemented in the software nQuery Advisor
nQuery Advisor: main menu

Entry of category probabilities for the two groups

Compute	Transfer	Close	Restore	Clear	Cut	Copy	Paste	Print
Category		Proportion in Group $1(x)$			Proportion in Group 2 (Y)			
1		0.264			0.349			
2		0.156			0.171			
3		0.131			0.127			
4		0.449			0.353			
$\Sigma \pi_{i}$		1.000			1.000			
$\mathrm{P}_{1}=P\left(X_{<} \mathrm{Y}\right)$		0.440						

Calculation of power

Wilcoxon (Mann-Whitney) rank-sum test that P $\chi^{\text {(}} \mathrm{CY}$) $=.5$ (ordered categories)					
	1	2	3	4	5
Test significance level, α	0.050	0.050			
1 or 2 sided test?	2	2			
Number of categories, k	4	4			
Side table name	E1	E1			
$\mathrm{P}_{1}=P\left(\chi_{<} \mathrm{Y}\right)$	0.440	0.440			
Power (\%)	89	90			
n per group	432	436			

Power is 0.89 for 432 patients per group - as found from equation (9.1)
Power is 0.90 for 436 patients per group

Lesaffre et al. (1993) present an alternative method based on simulation

Hilton (1996) evaluates the robustness of formula (9.1)

Julious and Campell (1996) examine (9.1) in the special case of binary data

Julious and Campell (1998) present formulae for the calculation of sample size for paired or matched ordered categorical data

9.5 Sample size reviews

Equation (9.1) is valid provided that:

- proportional odds hold
- $\overline{\mathrm{p}}_{\mathrm{k}}$'s are anticipated correctly

The latter can be checked at a sample size review

Idea

1. Guess $\overline{\mathrm{p}}_{1}, \ldots, \overline{\mathrm{p}}_{\mathrm{m}}$
2. Calculate n from equation (9.1) : denote value by n_{0}
3. Take cn_{0} observations, $\mathrm{c} \in(0,1)$ (e.g. $c=\frac{1}{2}$)
4. Estimate $\overline{\mathrm{p}}_{1}, \ldots, \overline{\mathrm{p}}_{\mathrm{m}}$ from blinded data
5. Use estimates to recalculate n, denote value by n_{1}
6. Collect the remaining data needed to achieve this sample size

Notes

- Final sample size must be $\geq \mathrm{cn}_{0}$
- Can limit to values $\in\left(\mathrm{n}_{0}, 2 \mathrm{n}_{0}\right)$, for example

Gould (1992, 1995) investigated the binary case, showed that type I error unaffected

Example in head injury (Bolland et al., 1998)

Patients: suffering from severe head injury
Treatments: eliprodil vs placebo
Outcome: Glasgow Outcome Scale (GOS) six months after randomisation - ordinal

	Proportion in each category		
	GR	MD	SD/V/D
	0.17	0.30	0.53
	0.274	0.346	0.38

Improvement to detect: GR + MD from 0.47 to 0.62

$$
\begin{aligned}
\theta_{\mathrm{R}} & =\log _{\mathrm{e}}\left(\frac{\mathrm{Q}_{\mathrm{kT}}\left(1-\mathrm{Q}_{\mathrm{kC}}\right)}{\mathrm{Q}_{\mathrm{kC}}\left(1-\mathrm{Q}_{\mathrm{kT}}\right)}\right)=0.610 \quad \text { for } \mathrm{k}=1,2 \\
\mathrm{n} & =\frac{12}{\left(1-\sum_{\mathrm{j}} \overline{\mathrm{p}}_{\mathrm{k}}^{3}\right)}\left(\frac{\mathrm{U}_{\alpha / 2}+\mathrm{U}_{\beta}}{\theta_{\mathrm{R}}}\right)^{2} \\
\alpha & =0.05,1-\beta=0.9, \overline{\mathrm{p}}_{1}=0.222, \overline{\mathrm{p}}_{2}=0.323, \overline{\mathrm{p}}_{3}=0.455 \\
& \text { giving } \mathrm{n}=394
\end{aligned}
$$

Total sample size rounded up to $\mathrm{n}_{0}=400$

Planned sample size review

- after responses from 100 patients
- timing at just beyond 9 months into trial after about 180 patients recruited (assuming entry rate of about 30/month)
- assessment of the need to adjust sample size for stratification
- new sample size to be used, n

$$
n=\left\{\begin{array}{l}
400 \text { if } n_{1}+n_{2} \leq 400 \\
n_{1}+n_{2} \text { if } 400<n_{1}+n_{2}<600 \\
600 \text { if } n_{1}+n_{2} \geq 600
\end{array}\right.
$$

Actual sample size review

- responses from 93 patients
- 2 years into the trial
- stratification for Glasgow Coma Score at day 0 (4-5 vs 6-8)

$$
\mathrm{n}=\frac{12}{\sum_{\mathrm{h}=1}^{2} \mathrm{~S}_{\mathrm{h}}\left(1-\sum_{\mathrm{j}} \overline{\mathrm{p}}_{\mathrm{kh}}{ }^{3}\right)}\left(\frac{\mathrm{U}_{\alpha / 2}+\mathrm{U}_{\beta}}{\theta_{\mathrm{R}}}\right)^{2}
$$

- where S_{h} is the proportion of patients in stratum h

		Proportion in each category		
GCS at day 0	Proportion of patients	GR	MD	SD/V/D
$4-5$	0.402	0.270	0.135	0.595
$6-8$	0.598	0.600	0.127	0.271

$$
\mathrm{n}_{1}+\mathrm{n}_{2}=444, \text { rounded to } 450
$$

- recommendation of modest increase from 400 to 450 accepted by the Trial Steering Committee

