Warwick Medical School

1

Sac

Combining short-term and long-term endpoint data in a clinical trial with treatment selection

Cornelia Kunz¹, Nick Parsons¹, Sue Todd², Tim Friede³ and Nigel Stallard^{1*}

¹University of Warwick, ²University of Reading, ³Universitaetsmedizin Göttingen

*n.stallard@warwick.ac.uk

THE UNIVERSITY OF

・ロト ・ 戸 ト ・ 日 ト ・ 日 ト

Motivating example

A trial in Alzheimer's disease

- experimental treatment at 3 doses and placebo control

Primary endpoint

- ADAS-cog change over 12 weeks

We want to

- select most effective dose
- provide a valid comparison with control

Motivating example

A trial in Alzheimer's disease

- experimental treatment at 3 doses and placebo control

Primary endpoint

- ADAS-cog change over 12 weeks

We want to

- select most effective dose
- provide a valid comparison with control

We will focus on treatment selection

・ロット (雪) () () () ()

= 900

Treatment selection

- often conducted in phase II(b) trial
- often based on short-term endpoint here ADAS-cog change over 6 weeks
- aims to select dose/treatment with best long-term endpoint

Treatment selection

- often conducted in phase II(b) trial
- often based on short-term endpoint here ADAS-cog change over 6 weeks
- aims to select dose/treatment with best long-term endpoint

But may well have long-term endpoint data for some patients Can we use this to improve selection?

Have short-term data for all and long-term data for some patients

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Have short-term data for all and long-term data for some patients

Question 1

Which is best approach:

- use available long-term data only?
- use available short-term data only?
- use combination of long- and short-term data? How?

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うくの

Have short-term data for all and long-term data for some patients

Question 1

Which is best approach:

- use available long-term data only?
- use available short-term data only?
- use combination of long- and short-term data? How?

Question 2

If we use short-term endpoint, what is best endpoint to use?

- E.g. could use eg 4 week data: more data, less correlated with long-term endpoint
- E.g. could use 8 week data:

fewer data, more correlated with long-term endpoint

k doses (possibly + control)

Short-term endpoint (N/group), $X_{i,j}$, i = 1, ..., k, j = 1, ..., N $X_{i,j} \sim N(\mu_{0i}, \sigma_0^2)$

・ロット (四)・ (田)・ (田)・ (日)

k doses (possibly + control)

Short-term endpoint (N/group), $X_{i,j}$, i = 1, ..., k, j = 1, ..., N $X_{i,j} \sim N(\mu_{0i}, \sigma_0^2)$

Long-term endpoint (n/group), $Y_{i,j}, i = 1, ..., k, j = 1, ..., n$ $Y_{i,j} \sim N(\mu_i, \sigma^2)$

うてん 川 ふぼうえば くちょうし

k doses (possibly + control)

Short-term endpoint (N/group), $X_{i,j}$, i = 1, ..., k, j = 1, ..., N $X_{i,j} \sim N(\mu_{0i}, \sigma_0^2)$

Long-term endpoint (n/group), $Y_{i,j}$, i = 1, ..., k, j = 1, ..., n $Y_{i,j} \sim N(\mu_i, \sigma^2)$

 $\begin{array}{l} \operatorname{corr}(X_{i,j},Y_{i,j})=\rho_w\\ \operatorname{corr}(X_{i,j},X_{i',j'})=\operatorname{corr}(Y_{i,j},Y_{i',j'})=0, i\neq i' \text{ or } j\neq j' \end{array}$

うせん 一川 (山田) (山) (山)

k doses (possibly + control)

Short-term endpoint (N/group), $X_{i,j}$, i = 1, ..., k, j = 1, ..., N $X_{i,j} \sim N(\mu_{0i}, \sigma_0^2)$

Long-term endpoint (n/group), $Y_{i,j}$, i = 1, ..., k, j = 1, ..., n $Y_{i,j} \sim N(\mu_i, \sigma^2)$

$$\begin{array}{l} \operatorname{corr}(X_{i,j},Y_{i,j})=\rho_w\\ \operatorname{corr}(X_{i,j},X_{i',j'})=\operatorname{corr}(Y_{i,j},Y_{i',j'})=0, i\neq i' \text{ or } j\neq j' \end{array}$$

We wish to select treatment with largest μ_i

・ロット・「山・・山・・山・・」 シック

Using long-term endpoint data only

- Obtain estimate $\tilde{\mu}_i = \sum_{j=1}^n Y_{ij}/n, i = 1, \dots, k$
- Select treatment with largest $\tilde{\mu}_i$

Using long-term endpoint data only

- Obtain estimate $\tilde{\mu}_i = \sum_{j=1}^n Y_{ij}/n, i = 1, \dots, k$
- Select treatment with largest $\tilde{\mu}_i$

Using short-term endpoint data only

- Obtain estimate $\hat{\mu}_{0i} = \sum_{j=1}^{N} X_{ij}/N, i = 1, \dots, k$
- Select treatment with largest $\hat{\mu}_{0i}$

Using long-term endpoint data only

- Obtain estimate $\tilde{\mu}_i = \sum_{j=1}^n Y_{ij}/n, i = 1, \dots, k$
- Select treatment with largest $\tilde{\mu}_i$

Using short-term endpoint data only

- Obtain estimate $\hat{\mu}_{0i} = \sum_{j=1}^N X_{ij}/N, i = 1, \dots, k$
- Select treatment with largest $\hat{\mu}_{0i}$

Using combination of short-term and long-term endpoint data

- Obtain estimate $\hat{\mu}_i$ from bivariate model

$$\left(\begin{array}{c} X_{i,j} \\ Y_{i,j} \end{array}\right) \sim N\left(\left(\begin{array}{c} \mu_{0i} \\ \mu_i \end{array}\right), \left(\begin{array}{c} \sigma_0^2 & \rho_w \sigma \sigma_0 \\ \rho_w \sigma \sigma_0 & \sigma^2 \end{array}\right)\right)$$

- Select treatment with largest $\hat{\mu}_i$

WARWICK

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\tilde{\mu}_i \sim N(\mu_i, \sigma^2/n)$$

$$\hat{\mu}_{0i} \sim N(\mu_{0i}, \sigma_0^2/N)$$

$$\hat{\mu}_i \sim N(\mu_i, \sigma^2/n^*)$$

where $n^* = \left(\frac{1}{n} - \rho_w^2 \left(\frac{1}{n} - \frac{1}{N}\right)\right)^{-1}$

$$\tilde{\mu}_i \sim N(\mu_i, \sigma^2/n)$$

 $\hat{\mu}_{0i} \sim N(\mu_{0i}, \sigma_0^2/N)$

$$\hat{\mu}_i \sim N(\mu_i, \sigma^2/n^*)$$

where $n^* = \left(\frac{1}{n} - \rho_w^2 \left(\frac{1}{n} - \frac{1}{N}\right)\right)^{-1}$

Hence get probability of selecting certain treatment with each method for given μ_i , μ_{0i} , σ , σ_0 , ρ_w

Gain from using short-term endpoint

 n^{\ast} is 'equivalent sample size' from use of short-term information

$$n^* = \left(\frac{1}{n} - \rho_w^2 \left(\frac{1}{n} - \frac{1}{N}\right)\right)^{-1}$$

Note: $n^* \ge n$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Gain from using short-term endpoint

 n^{\ast} is 'equivalent sample size' from use of short-term information

$$n^* = \left(\frac{1}{n} - \rho_w^2 \left(\frac{1}{n} - \frac{1}{N}\right)\right)^{-1}$$

Note: $n^* \ge n$ $\rho_w = 0 \implies n^* = n$ $\rho_w = \pm 1 \implies n^* = N$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへの

Gain from using short-term endpoint

 n^{\ast} is 'equivalent sample size' from use of short-term information

$$n^* = \left(\frac{1}{n} - \rho_w^2 \left(\frac{1}{n} - \frac{1}{N}\right)\right)^{-1}$$

Note: $n^* \ge n$ $\rho_w = 0 \implies n^* = n$ $\rho_w = \pm 1 \implies n^* = N$

Endpoint 1: ρ_w , N Endpoint 2: ρ'_w , N'

Endpoint 1 is preferable if $\rho_w\left(\frac{1}{n}-\frac{1}{N}\right) > \rho'_w\left(\frac{1}{n}-\frac{1}{N'}\right)$

WARWICK

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Trade-off between larger N and larger ρ_w (here with n = 40)

Ν

Random effects model

Assume

$$\left(\begin{array}{c} X_{i,j} \\ Y_{i,j} \end{array}\right) \sim N\left(\left(\begin{array}{c} \mu_{0i} \\ \mu_i \end{array}\right), \left(\begin{array}{c} \sigma_0^2 & \rho_w \sigma \sigma_0 \\ \rho_w \sigma \sigma_0 & \sigma^2 \end{array}\right)\right)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Random effects model

Assume

$$\left(\begin{array}{c} X_{i,j} \\ Y_{i,j} \end{array}\right) \sim N\left(\left(\begin{array}{c} \mu_{0i} \\ \mu_i \end{array}\right), \left(\begin{array}{cc} \sigma_0^2 & \rho_w \sigma \sigma_0 \\ \rho_w \sigma \sigma_0 & \sigma^2 \end{array}\right)\right)$$

$$\left(\begin{array}{c} \mu_{0i} \\ \mu_i \end{array}\right) \sim N\left(\left(\begin{array}{c} \theta_{0i} \\ \theta_i \end{array}\right), \left(\begin{array}{c} \tau_0^2 & \rho_b \tau \tau_0 \\ \rho_b \tau \tau_0 & \tau^2 \end{array}\right)\right)$$

Note:

- we still wish to select treatment with largest μ_i (not θ_i)
- we will use fixed effects model to draw inference on specific treatments
- we will use random effects model to understand properties of different approaches

WARWICK

ρ_w and ρ_b

(here with $\sigma = \sigma_0 < \tau = \tau_0$ for clarity)

Note: for surrogate endpoint require both ρ_w and ρ_b are large

WARWICK

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Random effects model

$$\begin{pmatrix} \tilde{\mu}_{i} \\ \mu_{i} \end{pmatrix} \sim N\left(\begin{pmatrix} \theta_{i} \\ \theta_{i} \end{pmatrix}, \begin{pmatrix} \sigma^{2}/n + \tau^{2} & \tau^{2} \\ \tau^{2} & \tau^{2} \end{pmatrix}\right)$$
(1)
$$\begin{pmatrix} \hat{\mu}_{0i} \\ \mu_{i} \end{pmatrix} \sim N\left(\begin{pmatrix} \theta_{0i} \\ \theta_{i} \end{pmatrix}, \begin{pmatrix} \sigma_{0}^{2}/N + \tau_{0}^{2} & \rho_{b}\tau_{0}\tau \\ \rho_{b}\tau_{0}\tau & \tau^{2} \end{pmatrix}\right)$$
(2)
$$\begin{pmatrix} \hat{\mu}_{i} \\ \mu_{i} \end{pmatrix} \sim N\left(\begin{pmatrix} \theta_{i} \\ \theta_{i} \end{pmatrix}, \begin{pmatrix} \sigma^{2}/n^{*} + \tau^{2} & \tau^{2} \\ \tau^{2} & \tau^{2} \end{pmatrix}\right)$$
(3)

hence get probability that

 $\arg \max_{i=1,...,k} \{ \hat{\mu}_{0i} \} = \arg \max_{i=1,...,k} \{ \mu_i \}$ etc.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Random effects model

$$\begin{pmatrix} \tilde{\mu}_{i} \\ \mu_{i} \end{pmatrix} \sim N\left(\begin{pmatrix} \theta_{i} \\ \theta_{i} \end{pmatrix}, \begin{pmatrix} \sigma^{2}/n + \tau^{2} & \tau^{2} \\ \tau^{2} & \tau^{2} \end{pmatrix}\right)$$
(1)
$$\begin{pmatrix} \hat{\mu}_{0i} \\ \mu_{i} \end{pmatrix} \sim N\left(\begin{pmatrix} \theta_{0i} \\ \theta_{i} \end{pmatrix}, \begin{pmatrix} \sigma_{0}^{2}/N + \tau_{0}^{2} & \rho_{b}\tau_{0}\tau \\ \rho_{b}\tau_{0}\tau & \tau^{2} \end{pmatrix}\right)$$
(2)
$$\begin{pmatrix} \hat{\mu}_{i} \\ \mu_{i} \end{pmatrix} \sim N\left(\begin{pmatrix} \theta_{i} \\ \theta_{i} \end{pmatrix}, \begin{pmatrix} \sigma^{2}/n^{*} + \tau^{2} & \tau^{2} \\ \tau^{2} & \tau^{2} \end{pmatrix}\right)$$
(3)

hence get probability that

 $\arg \max_{i=1,...,k} \{ \hat{\mu}_{0i} \} = \arg \max_{i=1,...,k} \{ \mu_i \}$ etc.

Note:

(2) depends on ho_b , but not on ho_w

(3) depends on ho_w (actually on ho_w^2) via n^* , but not on ho_b

WARWICK

Example:
$$k = 3, n = 20, N = 100, \theta_1 = \theta_2 = \theta_3, \theta_{01} = \theta_{02} = \theta_{03}$$

 $5\sigma = 5\sigma_0 = \tau = \tau_0$ $\sigma = \sigma_0 = \tau = \tau_0$ $\sigma = \sigma_0 = 5\tau = 5\tau_0$

Example:
$$k = 3, n = 20, N = 100, \theta_1 = \theta_2 = \theta_3, \theta_{01} = \theta_{02} = \theta_{03}$$

 $5\sigma = 5\sigma_0 = \tau = \tau_0$ $\sigma = \sigma_0 = \tau = \tau_0$ $\sigma = \sigma_0 = 5\tau = 5\tau_0$

Using short-term endpoint data alone can be better - if ρ_b large and $\rho_b > \rho_w$, particularly if τ and τ_0 are small

WARWICK

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Example:
$$k = 3, n = 20, N = 100, \theta_1 = \theta_2 = \theta_3, \theta_{01} = \theta_{02} = \theta_{03}$$

 $5\sigma = 5\sigma_0 = \tau = \tau_0$ $\sigma = \sigma_0 = \tau = \tau_0$ $\sigma = \sigma_0 = 5\tau = 5\tau_0$

Using short-term endpoint data alone can be better - if ρ_b large and $\rho_b > \rho_w$, particularly if τ and τ_0 are small Using short-term endpoint data alone can be (a lot) worse - if ρ_b is small or negative

WARWICK

▲ロト ▲眉ト ▲ヨト ▲ヨト 三ヨ のへで

Conclusions

Using short-term endpoint data (on more patients) with long-term endpoint data always improves precision and treatment selection

- Gain small for small ρ_w , but can be large for large ρ_w or N
- Choice of best short-term endpoint depends on $ho_w(1/n-1/N)$

うてん 川 ふぼうふがく (中)

Conclusions

Using short-term endpoint data (on more patients) with long-term endpoint data always improves precision and treatment selection

- Gain small for small $\rho_w,$ but can be large for large ρ_w or N
- Choice of best short-term endpoint depends on $\rho_w(1/n-1/N)$

Using short-term endpoint data alone can improve treatment selection

- if ρ_b is large and $\rho_b > \rho_w$, particularly if τ and τ_0 are small

Using short-term endpoint data alone can make treatment selection worse

- if ho_b is small or negative

Extensions

Adaptive design that allows combination of treatment selection phase with confirmatory two-arm phase - final analysis combines data from both phases and controls (familywise) type I error rate

Data-driven selection method; uses estimates of $\rho_w, \rho_b, \sigma, \sigma_0, \tau, \tau_0$ to choose whether to select based on $\hat{\mu}_{0i}$ or $\hat{\mu}_i$

- in most cases does as well as better of two methods
- in some cases does better than either method
- may be able to find better method

