Adaptive Trial Designs

Potential obstacles and possible solutions – case studies of adaptive design implementation

Christopher J Weir
Edinburgh HTMR

Please do not reproduce
Adaptive trial designs

- “The wise *adapt* themselves to circumstances, as water moulds itself to the pitcher.”

 Chinese proverb
Acknowledgements

- **Key references**
 - PhRMA Adaptive Designs Working Group. Data monitoring committees (DMCs) and confirmatory, adaptive clinical trials: the DMC charter.

- **Michael Krams, Johnson&Johnson**
Outline

• Categories of adaptive design
• Learning versus confirming
• Case study 1: ASTIN
• Case study 2: EuroHyp
• Case study 3: CDC
• Summary
Trials may adapt on…

- Allocation rule
- Sample size of next stage
- Stopping rules
 - Efficacy
 - Safety
 - Futility
- Recent developments
 - Compound
 - Indication
 - Endpoint
 - Patient population
Types of adaptive design

- First in human / dose escalation
 - Continual reassessment method (CRM)
 O’Quigley, 1990
- Multiple ascending dose / proof of concept
- Proof of concept / dose ranging
- Response adaptive dose ranging
- Seamless phase II / III with treatment selection
- Confirmatory phase III
Learning versus confirming

- Learn phase I; confirm phase IIA
- Learn phase IIB; confirm phase III
- Regulators prefer adaptive designs to be used during learning phase
- Encourage further exploration of their suitability in confirmatory trials

Case studies

• First in human / dose escalation
 • Continual reassessment method (CRM)
 O’Quigley, 1990

• Multiple ascending dose / proof of concept

• Proof of concept / dose ranging

• Response adaptive dose ranging

• Seamless phase II / III with treatment selection

• Confirmatory phase III
Case studies

• First in human / dose escalation
 • Continual reassessment method (CRM) O’Quigley, 1990
• Multiple ascending dose / proof of concept
• Proof of concept / dose ranging
• Response adaptive dose ranging
• Seamless phase II / III with treatment selection
• Confirmatory phase III
Case study 1

Summary

- Double-blind, placebo-controlled, Bayesian response adaptive dose-finding study
- Placebo and 15 doses (single 15 min i.v. infusion)
 - Doses 10, 16, 22, 27, 33, 38, 45, 52, 59, 67, 76, 84, 96, 108, 120mg
- Primary endpoint: Δ Scandinavian Stroke Scale (SSS) baseline to day 90
Case study 1
Summary

- **Real-time learning about dose-response**
 - Modelled via Normal Dynamic Linear Model
 - Early outcomes entered into longitudinal model to give predicted 90-day response
 - Identified optimal dose to be given to next patient

- **Adaptive treatment allocation**
 - Placebo 15% throughout trial
 - Optimal dose

- **Dynamic stopping rules**
 - Futility and efficacy
Case study 1

Results

• 966 patients randomised and treated

• 93% confirmed ischaemic stroke
 • Mean baseline severity SSS=28
 • Comparable demographics across treatment arms
 • Mean onset-to-treatment time 4hrs 08 mins
 • Mean door-to-needle time 2hrs 27 mins

• Stopped for futility (posterior probability 0.89)
Case study 1
A, Dose-effect curve of evaluable population on ΔSSS effect over placebo, with 95% CrI

Case study 1
Posterior probability in eligible patients of treatment being ineffective at ED95 (A) and treatment showing an effect of >2 points at ED95 (B)

Case study 1
Implementation

• Data monitoring committee
 • 3 clinicians, 1 statistician
 • Futility: $\Delta SSS < 1$ point, ED_{95} versus placebo
 • Efficacy: $\Delta SSS > 2$ points, ED_{95} versus placebo
 • Weekly updates of posterior probabilities of futility and efficacy – stop if either >0.9

• DMC independence and expertise key
 • Detailed charter critical
 • Accommodate unplanned analysis requests from DMC
Case study 1
Implementation

- Lengthy pre-trial preparation (18 months)
 - Upfront investment requiring commitment from whole research organisation
 - Substantial effort in creating and validating bespoke software

- Simulation complexity
 - Determine “type I / II errors” (although Bayesian)
 - Frequency of correct dose selection
 - Longitudinal model
 - Comparison with standard designs
Case study 1
Implementation

• Production/administration of multiple doses while protecting blind

• Longitudinal model: timely information for real-time analysis, adaptation and decision-making

• Speed of recruitment

• Documentation of all processes/actions for regulatory purposes
 • Engaged in early and ongoing discussions with regulators to avoid regulatory concerns
Case study 2
Summary

- EuroHyp – response adaptive dose ranging
- Hypothermia treatment for acute ischaemic stroke
 - i.v. infusion of chilled saline followed by **surface cooling** or **endovascular cooling** according to physician preference
Case study 2
Surface cooling
Case study 2
Summary

- EuroHyp – response adaptive dose ranging
- How low to reduce temperature?
 - 34 or 35 °C
- For how long?
 - 12 or 24hrs
- 2-D adaptive dose response scenario
Case study 2
Implementation

• No useful surrogate exists to drive adaptations
 • Objective endpoints key
• Instead use tolerability
 • As medical aids assist tolerability, less incentive to evaluate target temperature - instead aim for target temperature range and to maximise tolerability
• With tolerability aids in place would have limited power to identify differences between durations
• Pragmatic choice of feasible design covering entire 24hrs ‘at risk’ period
 • Considering adaptive design may improve research plan even if not ultimately adopted
Case study 3
Summary

• Chronic degenerative condition
• No current efficacious treatment
• Adaptive seamless phase II / III
 • Combine phase II, III results by combination test
• Phase II: 3 candidate treatments plus placebo
 • Retain fewer treatments in phase III
• Any treatment benefit anticipated to emerge over several years
Case study 3
Implementation

- Long period of action – cannot use target disability outcome measure at interim
 - Endpoints used at both stages must be well understood/accepted
 - Objective endpoints key
 - Cannot use seamless design to determine phase III outcome measure
- No need to compromise blinding going in to stage 2 of seamless design
Case study 3
Implementation

- No current established treatment
 - No known surrogate outcome for disability
 - Use lesser threshold of a “biologically plausible” endpoint: absence of effect indicates treatment not having anticipated mechanism of action
 - Adapt on biologically plausible biomarker at interim
- Substantial pre-trial simulation work
 - Operational characteristics
 - Feasible number of treatment arms in each phase
 - Validity of adapting on “biologically plausible” outcome
Adaptive design implementation
Summary

• Greater complexity
 • additional advance planning (3+ months)
• Secure/efficient information flow
 • real-time data analysis, communication, decision-making
• Objective endpoints
• Keep trial in context
 • issues/assumptions log
• Making case for funding
 • based on pre-trial simulations
• Independence and expertise of DMC
Other issues

- Technical/logistical challenges of randomisation/drug supply management
 - Solutions supporting adaptive design benefit all other trial implementations

- Information value rather than standard milestones
 - Compare versus standard design for key decision, e.g. ratio of time/patients needed

- Simulations should apply best-guess, optimistic, pessimistic scenarios and extreme cases to stress-test design
 - Gallo et al. Statistics in Biopharmaceutical Research 2010;2:513-521 presents case study where extreme case simulation would have helped
Other issues

- Protocol requirements
 - Justify adaptive design non-technically
 - Clarify DMC role and type I error control
 - List sensitivity analysis for operational bias: time trends in baseline characteristics, treatment efficacy
 - Simulation report provides design justification

- Funding applications
 - Driven by evidence from pre-trial simulations
 - Learning study: request mid-range
 - Confirmatory:
 » request upper end of range
 » further funding request informs on interim analysis findings and partially unblinds
Learning

• First in human / dose escalation
 • Continual reassessment method (CRM)
 O’Quigley, 1990
• Multiple ascending dose / proof of concept
• Proof of concept / dose ranging
• Response adaptive dose ranging
• Seamless phase II / III with treatment selection
• Confirmatory phase III
Confirming

- First in human / dose escalation
 - Continual reassessment method (CRM)
 O’Quigley, 1990
- Multiple ascending dose / proof of concept
- Proof of concept / dose ranging
- Response adaptive dose ranging
- Seamless phase II / III with treatment selection
- Confirmatory phase III