

Pharmacometric-based cost-effectiveness analyses

Professor Dyfrig Hughes
Centre for Health Economics & Medicines Evaluation
Bangor University, Wales, UK

"Marriage of pharmacometrics and pharmacoeconomic modeling"

© Adis International Limited. All rights reserved.

Economic Evaluations During Early (Phase II) Drug Development

A Role for Clinical Trial Simulations?

Dyfrig A. Hughes and Tom Walley

Prescribing Research Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

First proposition of the methods

Pharmacoeconomic modelling

Conventional modelling

- Data driven
- Empirical
- Extrapolations based on heroic assumptions
- Unreliable outside of defined parameters
- Limited capacity for early estimation of costeffectiveness

Pharmacometric-based modelling

- Exploits knowledge of the relationship between dose and response, and covariate effects
- Compatible with modelbased drug development
- Useful to inform clinical trial design, pricing

Applications

- Providing early indications of cost-effectiveness before largescale trial data become available;
- 2. Estimating the cost-effectiveness of complex pharmaceutical interventions (e.g. pharmacogenetic testing);
- Assessing subgroups, dosing schedules, non-adherence and protocol deviations;
- Directing future research based on the cost of reducing uncertainty;
- Informing strategic research & development and pricing decisions

APPLICATION 1

Early indications of cost-effectiveness

Mechanism-Based Approach to the Economic Evaluation of Pharmaceuticals

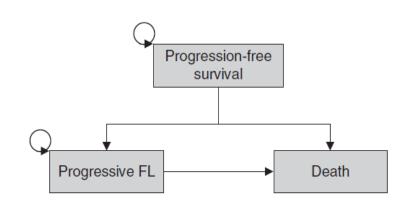
Pharmacokinetic/Pharmacodynamic/Pharmacoeconomic Analysis of Rituximab for Follicular Lymphoma

Joshua Pink, 1 Steven Lane2 and Dyfrig A. Hughes1

- 1 Centre for Health Economics and Medicines Evaluation, Institute of Medical and Social Care Research, Bangor University, Bangor, Wales
- 2 Department of Biostatistics, University of Liverpool, Liverpool, England

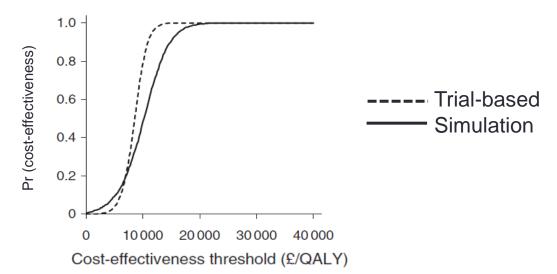
PAGE

Lewis Sheiner Prize, PAGE 2011, Athens


PK-PD and economic models

$$Cl = CL \times \left(\frac{BSA}{1.79}\right)^{\theta BSA_CL} \times (1 + \theta_{SEX_CL})$$

$$Vc = VC \times \left(\frac{BSA}{1.79}\right)^{\theta BSA_VC} \times (1 + \theta_{SEX_VC})$$


$$Cm(t) = \frac{\int_{t_n}^t C(\varphi)d\varphi}{t - \tau_{v}}$$

$$PFS(t) = e^{-\lambda_{max} \left(1 - \frac{Cm^{\gamma}}{Cm_{50}^{\gamma} + C_m^{\gamma}}\right)t}$$

Results – simulation vs trial

	Rituximab maintenance therapy		
	Simulation	Trial-based	
Mean time in PFS (years)	3.507	3.417	
QALYs	3.696	3.333	
ICER (£/QALY)	£9,076	£7,721	

APPLICATION 2

Cost-effectiveness of complex pharmaceutical interventions

Warfarin pharmacogenetics

- Variability in response to warfarin can be partly explained by genetic polymorphisms in
 - CYP2C9, VKORC1
- People with variant alleles are at an increased risk of overanticoagulation and bleeding
- Dosing algorithms based on pharmacogenetics may result in better INR control, and hence better clinical outcomes

BMJ 2011;343:d6333 doi: 10.1136/bmj.d6333

Page 1 of 14

RESEARCH

Dabigatran etexilate versus warfarin in management of non-valvular atrial fibrillation in UK context: quantitative benefit-har

© 00 OPEN ACCESS

Joshua Pink *PhD student*¹, Steven Lane *lea of clinical pharmacology*³. Dyfrig A Hughes

are publishing group ARTICLES

Comparative Effectiveness of Dabigatran, Rivaroxaban, Apixaban, and Warfarin in the Management of Patients With Nonvalvular Atrial Fibrillation

nature publishing group

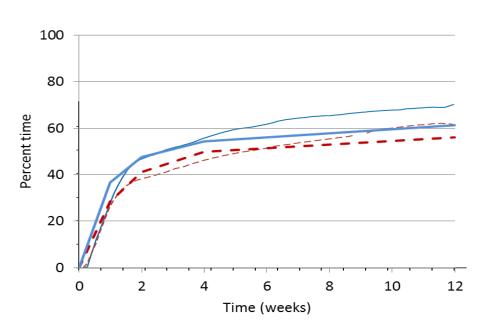
ARTICLES

I Pink1, M Pirmohamed2 and D.

Received 21 September 2012; accepted 1 A

CLINICAL PHARMACOLOGY & THERAPEUT

Cost-Effectiveness of Pharmacogenetics-Guided Warfarin Therapy vs. Alternative Anticoagulation in Atrial Fibrillation


J Pink¹, M Pirmohamed², S Lane³ and DA Hughes¹

Received 25 April 2013; accepted 7 September 2013; advance online publication 6 November 2013. doi:10.1038/clpt.2013.190

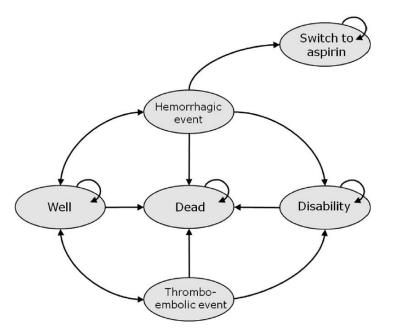
CLINICAL PHARMACOLOGY & THERAPEUTICS

ORIGINAL ARTICLE

A Randomized Trial of Genotype-Guided Dosing of Warfarin

Genotype-guided group

Clinical algorithm



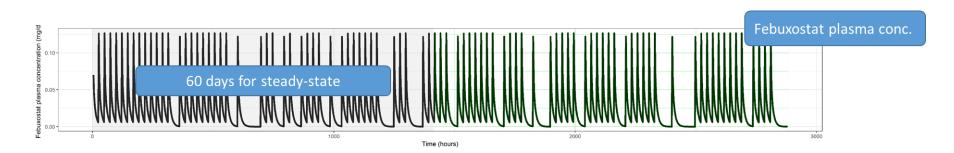
www.nature.com/tpj

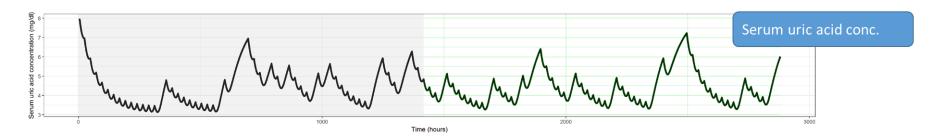
ORIGINAL ARTICLE

Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United Kingdom and Sweden

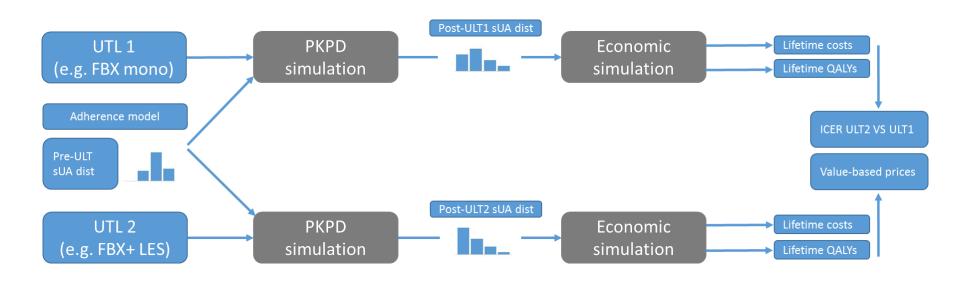
TI Verhoef^{1,2}, WK Redekop³, S Langenskiold^{4,5}, F Kamali⁶, M Wadelius⁷, G Burnside⁸, A-H Maitland-van der Zee², DA Hughes⁹ and M Pirmohamed⁸

	ΔCosts	ΔQALYs	ICER
Simulation	£41	0.0031	£13,226
Evaluation	£26	0.0039	£6,702


APPLICATION 3


Impact of non-adherence on cost-effectiveness

Urate lowering therapies


- Adherence to ULTs in gout is notoriously low
- Conventional economic evaluations unable to consider the relationship between missed doses, changes in serum uric acid, and costeffectiveness

PK-PD simulation

Modelling framework

OTHER EXAMPLES

ORIGINAL ARTICLE

Integrated Simulation Framework for Toxicity, Dose Intensity, Disease Progression, and Cost Effectiveness for Castration-Resistant Prostate Cancer Treatment With **Eribulin**

JGC van Hasselt^{1,2,3*}, A Gupta⁴, Z Hussein⁴, JH Beijnen^{1,5}, JHM Schellens^{2,5} and ADR Huitema^{1,2}

VALUE IN HEALTH 19 (2016) 1026-1032

Translating Pharmacometrics to a Pharmacoeconomic Model of COPD

Julia F. Slejko, PhD^{1,*}, Richard J. Willke, PhD², Jakob Ribbing, PhD³, Peter Milliaan, PhD⁴

¹Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore, MD, USA; ²International Society for Pharmacoeconomics and Outcomes Research, Lawrenceville, NJ, USA; 3Pharmetheus AB, Uppsala. Sweden: 4Global Clinical Pharmacology, Pfizer, Sandwich, United Kingdom

Br J Clin Pharmacol (2017) 83 1580-1594 1580

British Journal of Clinical

Pharmacology

Predicting economic outcomes based on trial design

PHARMACOECONOMICS

Interdisciplinary pharmacometrics linking oseltamivir pharmacology, influenza epidemiology and health economics to inform antiviral use in pandemics

Mohamed A. Kamal^{1,2}, Patrick F. Smith³, Nathorn Chaivakunapruk⁴, David B. C. Wu⁴, Chayanin Pratoomsoot⁵, Kenneth K. C. Lee⁴, Huey Yi Chong⁴, Richard E. Nelson⁶, Keith Nieforth³, Georgina Dall³, Stephen Toovey⁷, David C. M. Kong⁴, Aaron Kamauu⁸, Carl M. Kirkpatrick⁴ and Craig R. Rayner^{4,5}

Future directions

- Pharmacometric-based pharmacoeconomic analyses represent an additional step in model-based drug development
- Defining the potential benefit of applying linked pharmacometrics and health economics modelling to inform R&D decisions
- Develop value of information analyses

Acknowledgements

- Medical Research Council funding (Network of Hubs for Trial Methodological Research)
- Dan Hill-McManus, Dr Joshua Pink (Bangor University)
- Dr Scott Marshall, Dr Elena Soto (Pfizer Ltd, Sandwich)
- Prof Sir Munir Pirmohamed, Dr Steven Lane (University of Liverpool)